
Applied Math 91r A Fine Speech Recognizer

Applied Math 91r Research Paper – A Fine Speech Recognizer

Lukasz Strozek
Supervised by Paul Bamberg, Senior Lecturer in Mathematics

May 12, 2004

Team Members:

Jennifer Chen
Nick Elprin

Aaron Greenspan
Jeff Hammerbacher

Cassia Martin
Jack Miller

Lukasz Strozek
Mark Zuckerberg

Twenty Reasons Why Dogs Don’t Use Computers
7. Barking in next cube keeps activating YOUR voice recognition software.

Anonymous

1

Applied Math 91r A Fine Speech Recognizer

Table of Contents

1. Introduction to Speech Recognition 0
1.1. Origins and History 0
1.2. Limitations of Speech Recognition Systems 0
1.3. Speech Recognition As It Stands Today 0

2. Speech Recognition – A High Level Approach and Prerequisites 0
2.1. Abstraction Model 0
2.2. Basics of Digital Sound Processing 0
2.3. Theory of Hidden Markov Models (HMM) 0
2.4. Basics of Training 0
2.5. Basics of Recognition 0
2.6. Introduction to Phonetics and IPA 0
2.7. Terms Used Throughout 0

3. Our Implementation of a Speech Recognizer 0
4. From Speech to Digital Waveform 0
5. From Waveform to Spectral Display 0
6. Training and Recognition 0

6.1. Discrete Phrase Recognition 0
6.1.1. Exhaustive Search 0
6.1.2. Thresholding 0
6.1.3. Duration Modeling 0

6.2. Phoneme-based Recognition 0
6.2.1. Basic Model 0
6.2.2. Context-sensitive Model 0

6.3. Attempts at Connected Recognition 0

7. Working Recognizer in Action 0
8. Result Analysis 0

8.1. Accuracy 0
8.2. Speed 0

9. Further Improvements 0
9.1. Yet Faster FFT 0
9.2. Pipelined Process and just-in-time training 0
9.3. Full Phoneme-Based Recognition 0

9.4. Continuous Recognition 0
10. Bibliography 0

2

Applied Math 91r A Fine Speech Recognizer

1 Introduction to Speech Recognition

Speech recognition is only a small subset of a much larger group of tasks called Signal
Processing. All these tasks can be characterized with a “black box” approach: they perform
a conversion between an analog signal (e.g. a pattern of vibrations in air generated mostly
through resonating systems, or a pattern generated by light of varying intensity) and a
much more abstract structure understandable by a human. In addition to Sound Processing,
Computer Vision, a now-popular Computer Science topic, is another field embraced by Signal
Processing.

Homing in to Sound Processing, we isolate two complementary processes: speech recognition
and speech synthesis. The former transforms sound to language (and is thus called a Speech-
to-Text process) while the latter does the opposite: transforms words into their respective
utterances (Text-to-Speech). Both processes are thought to be rather difficult and, when
done properly, involve complex software and hardware. The difficulty is in the inherent
nondeterminism of language as a human creation (for instance, there is no formula which
can fully describe pronunciation), which computers are yet not fully capable of dealing with.

1.1 Origins and History

It is mistakenly believed that sound processing did not exist in the pre-computing epoch. In
fact, it all started with Bell’s 1870 invention of a telephone, which is nothing more than an
automaton converting sound to an intermediate form, transferring it through large distances,
and then converting it back to sound.

More surprisingly, as early as in 1936 Bell labs developed a machine that was capable of
synthesizing speech. Due to its many mechanical parts, the machine’s utterances sounded
tin-like and not human at all. For many decades, producers of sci-fi movies used this fact in
developing their vision of robots.

By the 1960s, it became clear that due to the existing limits in computer hardware, an
ambitious task of recognizing whole dictionaries-worth of speech was impossible. Researchers
concentrated on small-vocabulary systems whose task was to recognize one utterance out of
a very limited set. The first machine that can truly bear the name “speech recognizer” was
the VIP 100 by Threshold Technology. Ever since, an increasing number of companies have
devoted a great deal of research into the field, recognizing† that the ability to understand
spoken commands is of high demand in a highly-computerized world.

†No pun intended.

3

Applied Math 91r A Fine Speech Recognizer

1.2 Limitations of Speech Recognition Systems

There are a number of reasons why Speech Recognition is still not 100% accurate despite a
decades-long research in this field.

• Since speech recognition is a deterministic process that uses statistical methods to dis-
cern words, like-sounding words are very likely to be frequently confused. For instance,
saying “What are this hotel’s night rates?” and “The lab is out of nitrates” is thus
very likely to be recognized incorrectly.

• Speech as such is very context-sensitive. Homonymes (i.e. words having the same
sound, but different meanings, and more importantly – spelling) means that an idea
recognizer needs to “understand” what the speaking is saying (that is, be context-
sensitive). A speech recognizer has no way of knowing whether the speaker refers to
“bare” or “bear”; “in” or “inn”; “wait” or “weight”.

• Background noise and speech distortions are very difficult to filter out, and they can
grossly change the result of the recognition.

• Slurred speech, foreign accent, odd speech patterns are all factors which may decrease
the accuracy of a recognizer

• Hardware that delivers the sound to the recognizer is also imperfect. For instance, the
quality of a microphone may have a significant bearing on the results.

That said, voice recognition is given a great advantage – humans, aware that they are talking
to a machine, subconsciously slow down and talk more precisely, willing to help the system.
In conjunction with the specific purposes of the voice recognition systems (automated systems
have a limited set of possible answers to check against – for instance, ZIP codes or names of
the states – most of which are unequivocal), the performance of a well-constructed recognizer
may reach 90-95%.

1.3 Speech Recognition As It Stands Today

Speech Recognition is now categorized according to one criterion: speaker dependence.
Speaker dependent systems use designed for use by one specific user. These usually in-
volve personal computers, PDAs, cell phones, and other devices likely to have one user.

4

Applied Math 91r A Fine Speech Recognizer

They are easy to train and achieve high results due to low variation in test cases (it is as-
sumed that every person is moderately consistent in their way of speaking). However, they
are not scalable and are forever confined to a personal portable system.

Speaker adaptive systems are designed to adapt their operation to work with new speakers.
There involve dictation software packages. Again, they are pretty easy to train, but require
substantially more resources and are not as cheap to develop as speaker dependent systems.
Apple’s OS X now features Voice Recognition able to shut down your computer, launch
an internet browser or even tell a joke (from built-in joke database, OS X is no Artificial
Intelligence yet!). While still not 100% accurate, the system is an impressive addition to an
easy-to-manage desktop environment.

Speaker independent systems can be used without any training whatsoever. This branch is,
of course, where the demand lies, since systems that would perfectly recognize any speech
would be ideal for voice-enabled telephone systems (more and more companies use these
to make automated customer service more user-friendly and enhance its capabilities) like
ones installed in the American Airlines or Expedia support systems. Tourists would also
find such system handy as it would allow them to communicate with foreigners much more
easily. Imagine a hand-held recognizer, which “listens” to what a French tour guide says,
and displays the text it recognized – in English – on a display. Combined with a smart
speech synthesis system, full translators seem to be an attractive option. Imagine the same
hand-held recognizer actually telling you what that Frenchman said, in your native language!

The two leading manufacturers – IBM and Dragon Systems – managed to improve their
products a lot since the early 1980s. Voice recognition products today can support continuous
speech and large dictionaries, features especially useful for those who dictate text to be
written on screen (e.g. writers). They are also able to adapt much faster, with much fewer
training sessions. Today’s accuracy rates for commercial systems top at 98%, which is a giant
improvement over a mere 90% in the early 1990s. Most advanced packages switch between
two modes – text dictation mode and command mode – seamlessly, with an accuracy rate of
90%. And even though they are no competition to a fast typist (who achieves 80-100 words
per minute with an accuracy of 99.5%), systems such as this are gaining more and more
favor each day.

It is obvious that voice recognition is a very useful process, which can not only improve the
quality of life and help people with disabilities communicate more freely, but also help bring
down language barriers and increase communication efficiency.

5

Applied Math 91r A Fine Speech Recognizer

2 Speech Recognition – A High Level Approach and Prerequisites

Speech recognition is, in essence, a rather simple process. It consists of a series of processes
tied together. These are:

• Digital sound processing – this process converts human speech into a set of data relevant
to the recognizer

• Training – given the data, the training program takes a set of utterances of the same
phrase to create a model (a representative) for each utterance.

• Recognition – the actual recognizer attempts to fit all models to an unknown utterance
and returns the one that results in a best such fit

Variations on this scheme are possible, and we have indeed experimented with this simple
design while undertaking more and more demanding tasks.

2.1 Abstraction Model

In very high-level terms, each utterance from our recognizer’s vocabulary is assigned a model,
which consists of a set of nodes, each node being a set of characteristics (features) repre-
sentative of a fraction of the utterance. Training is the process, which, given a series of
utterances of the same phrase (the training set), a model for the phrase is made. Given a
set of models, the recognizer will attempt to see how well each of the utterances from the
test set fits any one of these models, and return the one that fits the utterance best.

Let’s trace a simple, (very) high-level example. Let our vocabulary consist of two phrases:
“thanks” and “goodbye.” Assume that our “features” consist of two data: which frequencies
are emphasized (L, M, H for Low, Medium and High) and what the overall amplitude is (L,
M, H). We can think of a suitable model for the former as a set of nodes

(M, L), (L, H), (H, M)

because we don’t hear much of the “th” in the word “thanks” (hence low amplitude at the
beginning) while the final “s” gives a high-frequency node; a suitable model for the latter
could then be a set of nodes

6

Applied Math 91r A Fine Speech Recognizer

(L, L) (L, H) (L, M)

If an utterance to recognize were of the form

(M, M), (L, H), (H, H)

the recognizer would fit the former model better and thus the phrase would be recognized
as “thanks”.

The recognizer, in essence, abstracts from the actual waveform to create a set of nodes. It’s
the nodes that are matched against each other. Throughout the process, a major data loss
is incurred, but (at least in theory) the information lost accounts for nothing relevant to the
recognizer’s task (for instance, information such as overall loudness and pitch is lost, but
these should by no means decide which phrase a given utterance fits best!).

2.2 Basics of Digital Sound Processing

The utterances are all nothing more than analog signals, that is, sounds like many that
surround us. In technical terms, a sound signal is a pattern of pressure changes in air –
continually compressed and expanded air forces parts of the human ear to resonate, thus
creating a phenomenon of hearing. When we speak, similar devices in our throat resonate
and as a result produce those patterns, vibrations.

These analog signals are continuous, that is, the strength of the signal at any given time can
be any non-negative number (is not quantized, or restricted to a multiple of some value) and
changes continuously. Such signals are difficult for a computer to handle, since computers are
nothing else than finite state machines that need to operate on finite sets. Devices exist that
convert an analog signal into a digital one, i.e. one that consists of series of quantized data.
Electrical components are made to resonate as sound passes through them thus creating
voltage changes. These changes are then sampled (i.e. probed) with high frequency and
quantized. Such signal is then easy to work on with a computer.

It has been proven that actual readings are of no use for speech recognition, since in their
most basic form they don’t convey relevant information about the sound characteristics.
Instead, it is argued, one should look at the frequency chart of a sound wave. What is a
frequency chart? Every waveform can be represented as a sum of pure sine waves of different
frequencies and amplitudes. In technical terms, the frequency chart is a decomposition of a
waveform by frequency ranges. If the waveform is a set of amplitude readings as a function

7

Applied Math 91r A Fine Speech Recognizer

of time

w(t) = (V1, V2, . . .) (1)

its frequency chart is a set of energies characteristic for several frequency ranges as a function
of time

~f(t) = ((E1(f1), E1(f2), . . . , E1(fn)), (E2(f1), . . . , E2(fn)), . . .) (2)

In fact, each of fi is a range of frequencies. Each set of energies, for a given time unit (called
a frame) becomes a feature of the frame. Given these features, models of speech can be
made.

2.3 Theory of Hidden Markov Models (HMM)

A Markov process is a simple stochastic process in which the distribution of future states
depends only on the present state and not on how it arrived in the present state. If, in
addition, such process is given in discrete time values, such process is called a Markov
chain.

A hidden Markov model (HMM) is a model used widely in AI research, as well as speech
recognition, based on the Markov chain idea. Formally, it is a five-tuple (ΩX , ΩO, A, B, π),
where

ΩX is a finite set of possible states s1, . . . , sn

ΩO is a finite set of possible observations v1, . . . , vM

A = {aij} are transition probabilities, i.e. aij = Prob(Xt+1 = sj | Xt = si)

B = {bi} are observation probabilities, i.e. bi(k) = Prob(Ot = vk | Xt = si)

π = {πi} is the initial state distribution, i.e. πi = Prob(X0 = si)

Let σ = (f1, . . . , fm) be the sequence of actual observations, σ ⊆ ΩO. Given a fixed ΩX and
ΩO, we seek:

• Prob(σ | {A, B, π}), the probability of the observations given the model

• The most likely state trajectory (path) given the model and observations

• Adjust {A, B, π} so as to maximize Prob(σ | {A, B, π})

8

Applied Math 91r A Fine Speech Recognizer

In our case, ΩX will correspond to a finite set of nodes while σ – to the frames of our
utterance. We seek the probability that a given model {A, B, π} fits our utterance and the
path which represents the most likely assignment of states to the observations. Refer to the
following two sections for actual application to a speech recognition task.

2.4 Basics of Training

The task of training is as follows: each phrase in a vocabulary needs to be assigned a model.
Such model will be a set of nodes which best characterizes a given utterance. The training
is performed in two stages:

• First, it needs to be decided where the speech begins and where it ends. Input signal
may have plenty of “padding” silence surrounding the speech.

• Then, the program needs to create an actual model consisting of n nodes that best fits
all of the utterances of a given phrase. An important performance question addressed
in this paper is one of what n should be in order to create most representative models.

The two tasks are, surprisingly, very similar. The first one can be modeled as describing
a finite state machine with three states: silence (s1), followed by speech (s2), followed by
silence (s3). Given an utterance consisting of a series of frames

f1, f2, f3, . . . , fm (3)

If a frame fi belongs to a state sj, we say fi ∈ sj . The algorithm needs to find two boundaries:
one between s1 and s2 (let’s call it b1) and one between s2 and s3 (say, b2). A value of a
boundary bj is defined as an index i such that fi ∈ sj while fi+1 ∈ sj+1.

First, these boundaries are assigned some initial values. Then, a Dynamic Programming
method is used to determine how well given set of frames represent this initial breakdown.

Our state space is an ordered pair (fi, sj), s.t. fi ∈ sj. At any next frame fi+1, we can
either stay in the same state sj or move to the next state sj+1. With each pair there is
a fitness value associated with it, which described how well a given state models a given
frame. In fact, our algorithm assigns penalties to pairs instead of fitness values (we can
think of penalties as being negative fitness values). A path is a series of legal moves from
the initial state (f1, s1) to the final state (fm, s3). A path with the smallest penalty uniquely
determines the boundaries: since there is exactly one i1 such that (fi1, s1) and (fi1+1, s2)
both belong to the best path, the value of b1 is i1. Similarly, since there is exactly one i2
such that (fi2 , s2) and (fi2+1, s3) both belong to the best path, the value of b2 is i2.

9

Applied Math 91r A Fine Speech Recognizer

Given these boundaries, a model is created as follows: Each node corresponding to a state
sj is an average of all frames fi such that fi ∈ si. For the speech-silence model, states s1

and s3 are merged together in creating a single node called the silence node.

Given these new boundaries (closer to the actual model, but not necessarily defining the best
possible model), a similar process can be performed again to refine the boundaries. Given
enough iterations, the boundaries converge to their optimal values.

One should notice that the same procedure can be carried out for the second stage of training,
i.e. creating an actual model. All frames between the two boundaries, that is, frames
(fb1+1, fb1+1 + 1, . . . , fb2 , give us our new state space. Given that we need n nodes in our
model (the value of n needs to be agreed upon), we have n states s1, . . . , sn, and so these
frames are divided up linearly into n− 1 parts and the initial n − 1 boundaries are drawn.
Dynamic Programming method is used to determine the path of minimum penalty, and given
this path, new state boundaries are determined. Again, iteration of the above process will
eventually make the boundary values converge to some optimal values.

Because we have several utterances of one phrase, an average across all corresponding frames
in all utterances is taken while performing the latter process. However, for the silence-
speech-silence model, each utterance is treated individually as the amount of silence across
utterances may vary significantly.

j Really? Or do we take average of the nodes? Nick, Jen?

The following example may be helpful.

j Example, Lucas

2.5 Basics of Recognition

Given a set of models Mk = (Fk,1, . . . , Fk,nk
) consisting of nk nodes, and a sequence of frames

f1, . . . , fm of the unknown utterance, the recognizer will then attempt to find a model which
fits the utterance best (i.e. a model which gives a minimum-penalty path). This is done
using a Dynamic Programming method similar to one used for training. For each k, our
state space is an ordered pair (fi, sk,j), which denotes frame i being in a state corresponding
to Fk,j, the jth node of a kth model. At any next frame fi+1, we can either stay in the same
state sk,j or move to the next state sk,j+1. With each pair there is a penalty value incurred,
proportional to the misfit of the frame. The Dynamic Programming method finds the path

10

Applied Math 91r A Fine Speech Recognizer

of a smallest penalty from (f1, sk,1) to (fm, sk,nk
). A value of k for which such penalty is

the minimum determines the model which the unknown utterance fits best (ties are broken
arbitrarily).

Because, effectively, the entire state space, and thus the running time of the algorithm, is
O(maxK

1 (nk)mK), a cubic-order, our focus lay in improving the existing algorithm with
heuristic methods, outlined in the following chapters.

2.6 Introduction to Phonetics and IPA

Phonemes are smallest unit of speech. Every utterance is a set of phonemes, which correspond
to different sounds in our speech. For example, the words “could” may be thought of as
consisting of sounds like “K”, “U” and “D”. In fact, there is a special alphabet consisting
of hundreds of symbols, which makes transcribing words in most languages in the world
possible. It is an International Phonetic Alphabet (IPA), whose chart is included below.

j IPA chart, Lucas

One idea for a speech recognizer is to generate models for each phoneme as opposed to each
utterance. The phrase to be recognized is then matched against a set of phonemes as models,
and the best phoneme model for the phrase is found. We transcribed all the phrases in our
test to an ASCII IPA system, which is a simplified IPA system using plain ASCII codes to
make the transcriptions easier to encode in a computer-based speech recognition system. We
first used an online English-IPA dictionary at

http://www.foreignword.com/dictionary/IPA/

and then followed ASCII IPA conventions at

http://odur.let.rug.nl/ kleiweg/ascii-ipa/

The transcriptions provided are not perfect, and, in particular, required much adaptation
for casual American pronunciation, and word boundary ellisions.

11

Applied Math 91r A Fine Speech Recognizer

2.7 Terms Used Throughout

To recap, below is a list of all terms that will be used throughout this paper. This section is
primarily for reference.

• Utterance – a phrase recorded and stored in memory, which constitutes the unit of
speech to recognize. The word “mathematics”, for example, is an utterance because it
exists in our vocabulary.

• Vocabulary – a set of all utterances whose models we have. In other words, a set of
all phrases which the recognizer is able to discern

• Phoneme – an indivisible unit of speech. Utterances are made up of phonemes.
Phonemes correspond to different sounds that we utter in order to say these phrases.

• Sample – a smallest unit of the digital waveform. Sampling is a process whereby the
signal strength is probed with high frequency. Each time the strength is probed, its
value is one sample.

• Frame – a smallest time chunk of the frequency chart. A frame corresponds to a range
of samples, usually 120ms-worth of an utterance.

• Frequency – an utterance consists of a series of frames, each frame having character-
istic layout of frequencies. Each frequency has a relative signal power associated with
it. A set of all frequencies’ powers in a given frame constitute this frame’s features.

• Amplitude – the strength of each frame. The louder the frame is, the greater its
amplitude.

• Features – a set of characteristics for a given frame, i.e. the powers for each frequency
and the amplitude. Training and recognition treat these features as building blocks for
the models.

• Node – a “representative” feature. Nearby features in each utterance are grouped
together and averaged out, and their average across all similar utterances may be basis
for a node.

• Model – a set of nodes representing a given utterance. Each model consists of a set of
nodes. For example, there is a model for the utterance “applied math”. These models
are used in recognition.

• Training Set – a set of utterances of the same phrase used in training; these utterances
will help create a model for the phrase

• Test Set – a set of utterances unknown to the recognizer, which the recognizer will
attempt to match with one of the models in its memory and thus, one of the phrases

12

Applied Math 91r A Fine Speech Recognizer

3 Our Implementation of a Speech Recognizer

Our team’s goal was to design and implement a new voice recognizer from scratch, building
upon existing ideas and changing the recognizer design through experiments and innovation.
The following were our main goals, and we attempted them in this particular order:

• A discrete speech recognizer, able to discern between a very small vocabulary, consist-
ing of the phrases “Mathematics”, “Computer Science”, “Applied Math” and “Lin-
guistics”. The recognizer was trained using five utterances of each phrase, and in the
final testing it was supposed to recognize twenty shuffled utterances from the test set.
All utterances were recorded by the same person. The training algorithm used a fixed
number of nodes per model, and so the phrases had to be of similar lengths in order
to achieve best results.

• We then decided to attempt a more useful task of recognizing vocabulary from a
traveler’s foreign language phrase book. We used Berlitz Hungarian For travelers, 1981,
but the choice is entirely arbitrary. From that phrase book, we transcribed about 130
phrases into IPA. We ran simulated annealing over those phrases to generate a minimal
phrase set that contained all the phonemes that appeared in our dataset. Running
with 1000 iterations actually resulted in a smaller dataset than the 20 phrases we were
looking for. We augmented the resulting 13 phrases with another 7 picked manually
to represent less common phonemes. Since this expanded vocabulary increased the
running time of our program, we introduced thresholding, that is, reducing the search to
elements likely to produce the correct answer (more about thresholding in the following
chapters).

• Duration model was introduced. So far, our model guaranteed nothing about how
many frames each node consisted of. We decided to introduce duration modeling so
that extra penalty would be incurred for nodes consisting of too few or too many
frames.

• Phoneme model was then introduced. Given the IPA translations of each phrase, we
decided to make each phoneme a node (or a couple of nodes) and perform the training
by creating a model for each phoneme and then attempting to recognize the phrases by
checking how close the recognized phonetic model fits any of the models given in the
vocabulary. This task was obviously less accurate as we treated all phonemes the same
way, and so thresholding had to be reduced in order to make sure we don’t introduce
false results.

• Finally, an attempt at connected digit recognition was made. We created a model for
each phoneme in each context and then attempted to recognize series of three digits.

13

Applied Math 91r A Fine Speech Recognizer

This task would be impossible with discrete speech as the number of models under an
old scheme equals a thousand (all possible three-digit combinations). With context-
sensitive phoneme-based recognizer, substantially fewer models were necessary.

We decided to use PHP as our programming environment. Since the end goal of the project
was to create a voice recognition system that would work on pre-recorded audio files, simple
enough for the average end-user to work with, the simplicity of PHP as well as availability
of different modules makes our task easier. Moreover, great computational power is not of
prime importance as the task of speech recognition does not demand the speed premium
offered by an ahead-of-time compilation. Moreover, creating the system required string-
ing together a number of interrelated but separate software components: Windows-based
recording software, signal processing code, training algorithms, and the core of the software,
the recognizer itself. PHP makes combining such components really easy. In this particular
project, each component was assigned to a different team of programmers, where each team
comprised one or two students. With the exception of the recording software, all of the
components were written by students in PHP.

Since PHP is a scripting language that is popular for its ability to create web-based applica-
tions relatively quickly, the interface for the voice recognition software was also web-based,
unlike most commercially-available voice recognition systems, which run on the Win32 plat-
form. Also, since the code was written (almost) entirely in PHP, apart from the actual
recording, it is completely portable and platform-independent. Since different team mem-
bers had different operating systems, writing the code in PHP eliminated the problem of
porting working code. Working modules could be immediately shared between all team
members.

We also designed our own Bug Database and Version Control System. Members of the team
checked out working versions and checked in code they were working on. This made the
coding effort efficient, as well as enabled the teams to work on the project concurrently.

j Aaron – more to write?

14

Applied Math 91r A Fine Speech Recognizer

4 From Speech to Digital Waveform

This (and the following ones) chapter will concentrate on our actual implementation. De-
tails of the implementation as well as changes in the original design will be presented and
discussed.

The first step to recognizing speech was to convert it to a digital form. As of today, there
exists no possibility for PHP to record sound on a client’s computer (PHP, by definition, is a
processing language working on the server side), so we had to rely on a platform-dependent
professional application. We used a Win32 application called NCollect, which recorded the
utterances and saved them in a NIST file.

NIST (.nwv) files are raw sound files enriched with headers preceding the actual data. These
headers contained information about the length of an utterance and a prompt associated with
each (it was possible to assign a prompt to each recorded phrase from within NCollect) –
the two pieces of information relevant to us.

One enormous advantage of the NIST format is that NIST files allow multiple utterances to
be combined into one file by simple file concatenation. This means that all utterances from
one session were stored in a single file, which made data processing much simpler and cleaner,
with fewer files that needed to be uploaded and downloaded by various team members.

More information can be found on this format from the Linguistic Data Consortium at:

http://www.ldc.upenn.edu/Using/

One important limitation we had to consider when choosing our sampling rate (the frequency
with which probing is performed) is the so-called Nyquist frequency. Since sampling intro-
duces data loss, it is impossible to exactly reconstruct the waveform from its sampled form.
In essence, due to quantization in both the voltage and time, only an approximate form of
the utterance is represented by the digital data. Data loss due to sampling is called aliasing.
A particular form of aliasing occurs when the frequency of any wave component is higher
than 1/2 of the sampling rate (this threshold value is called the Nyquist frequency). If this
is the case, aliasing causes the information about the waveform to be entirely lost. Let’s give
an example.

j Example of aliasing and Nyquist frequency, Lucas

15

Applied Math 91r A Fine Speech Recognizer

Since frequencies found in speech rarely exceed 4 kHz, we decided to record data with a sam-
pling rate of 11025 Hz (this is one-fourth of a professional sampling rate, but is still greates
than the Nyquist frequency for speech, so it doesn’t reduce the quality of our recordings).
The data was a single-channel (Mono) 16-bit data, which means that the wave data was
represented by integers ranging from -32767 to 32768.

The nwv files collected through NCollect were then uploaded to the server, which performed
their spectral analysis.

16

Applied Math 91r A Fine Speech Recognizer

5 From Waveform to Spectral Display

From this point on, every process was carried out with code written by us in PHP. First, a
PHP module called fft.php performed a Fourier Analysis on the raw sound data in order
to extract its spectrum information.

Fourier Analysis is a technique which allows a decomposition of a signal, w(t), into its

component frequencies, ~f(t) = (f, E(f)). It assumes that w(t) is periodic. To make w(t)
periodic, for a given window of size N , we construct

w′(0 6 t < N) = w(t)

w′(t < 0) = w′(t + Nk), where k =

⌈−t

N

⌉

w′(t > N) = w′(t−Nk), where k =

⌊

t

N

⌋

(4)

so that w′(t) = w′(t + N) for all t. To a certain approximation, and with a sufficiently large
window, this reflects true characteristics of the signal.

Fourier showed how, given w′(t), one can find F (t), defined as

F (f) =

∞
∑

−∞

w′(t)e−2iπftdt =

∞
∑

−∞

w′(t) (cos(2πft)− i sin(2πft)) dt (5)

Since we’re dealing with discrete values, a variation on this has also been developed called
the Discrete Fourier Transform (DFT). For discrete-valued sequence of complex-valued data

x0, x1, . . . , xN−1 (6)

in a similar fashion to w′, we extend x to all integer values:

x(i < 0) = x(i + Nk), where k =

⌈−i

N

⌉

x(i > N) = x(i−Nk), where k =

⌊

i

N

⌋

(7)

so that x(i) = x(i + N) for all i. The Discrete Fourier Transform is defined as

X(n) =
1

N

N−1
∑

k=0

x(k)e
−2ikπn

N (8)

17

Applied Math 91r A Fine Speech Recognizer

for 0 6 n < N . Since X(n) is a complex series, we define

amplitude = A(n) = ||X(n)|| =
√

Re(X)2 + Im(x)2 (9)

phase = tan−1

(

Im(x)

Re(x)

)

(10)

Since the original x(i) comes from the real waveform w(i), we have

Im(x(i)) = 0

Re(x(i)) = w(i) ∀i (11)

It has also been shown that human ear is insensitive to phase (if the same signal is Fourier
transformed into component waveforms, a random number of waveforms is phase shifted, the
resultant sum sounds to a human ear exactly the same as the original waveform), so for the
purposes of speech recognition, it is irrelevant information. The pairs {(n, A(n))}, where n
is the so-called Harmonic Number and ranges from 0 to N/2, give us the frequency chart.
The frequencies are not spread linearly; in fact, A(0) is the DC component (the average of
the input series), A(1) is the amplitude of the first harmonic, which is the sine component
whose period is N, etc. Finally, A(N − 1) is the amplitude of the Nyquist Frequency – the
component whose period is 2. The following picture illustrates the relationship between the
harmonics and the values of X(n).

j Picture from fft-good.pdf, Lucas

Performing Fourier Analysis on regularly translated windows gives us various values for
{(n, A(n))} as functions of time.

For the purposes of our implementation, we used an efficient version of DFT perfectly suited
for the processing of digital data. A technique called Fast Fourier Transform does the
analysis in time O(n log n) instead of the original O(n2). The implementation we’re using in
our project – Radix-2 Cooley-Tukey – has been developed by Cooley and Tukey in 1965
and requires that the number of data points be a power of 2. This condition can easily be
satisfied by choosing a window size that is a power of 2 and padding the data with enough
zeros at the end of a signal so that the last window fits entirely in the data.

Since cropping data into a window introduces an artifact at the boundary (the signal is
continuous between i = 0 and i = N − 1, but, since x(N) = x(0), there is a discontinuity
between i = N − 1 and i = N and this discontinuity repeats throughout all multiples of N),
we introduced a technique called windowing to reduce the artifact. Essentially, multiplying
the signal x(i) by a continuous waveform that vanishes at the two ends causes the resultant

18

Applied Math 91r A Fine Speech Recognizer

signal to be continuous. We used a Hamming window

h(0 6 i < n) = sin
iπ

N
(12)

The following figure illustrates the effect of a Hamming window.

j Hamming window, Lucas

Our module, fft.php, performed a Fast Fourier Transform on data read from the nwv file
and stored the results in an spp file whose format we invented. Its format is as follows:

for each utterance from the nwv file,

line 0: header of the form

Utterance <number> <prompt>:<IPA transcription>

lines 1-n: n frames of the form

Frame <number> <amplitude> <X(i) for F frequency ranges>

at least one blank line

Where amplitude is the total frame amplitude, which is followed by F sets of data, one for
each frequency group. A window of size 1024 gives us 512 possible frequencies, which then
were combined in groups of 32 to give 16 output frequency ranges.

Further finetuning led to an introduction of partially overlapped windows. In order to make
the output chart short enough, windows should not overlap in all frames apart from the first
and the last, but in a much smaller fraction of frames. After certain experimentation, an
overlap of 25% was introduced.

Due to the attenuation of high-frequency signals, a high-frequency filter has been introduced:
replacing each data x(i) with the first-difference x(i)−x(i−1) acts as a pretty effective high-
frequency filter. Further experimentation led to the final substitution

x(i) ←− x(i)− 0.9x(i− 1) (13)

The data is usually displayed as a spectrum graph, where the horizontal axis denotes time,
the vertical axis – frequency ranges, while the intensity (energy) is represented with varying
color of the points. PHP makes it possible to generate graphics on the fly and display it in
the browser. Out display module takes an spp file and generates an image of the spectrum.
Since the amplitude, as well as individual energies, are relative values, the display module
transforms the data by adding on the amplitude to each of the energies, which in turn

19

Applied Math 91r A Fine Speech Recognizer

are scaled to fit around the average. The color values range from black to blue (default
for silence) to yellow to white. The scale is asymptotic, so that arbitrarily large values of
energies may be accommodated, though in real life (and with our microphone) values greater
than 400 were never encountered.

The display module, graphics.php, can display graphs of an arbitrary size (the default size
is directly proportional to the number of frequency ranges in the vertical direction and the
number of frames in the horizontal direction). Bilinear and bicubic resizing of the display
is possible for better visualization. The module also implements a cutoff filter, which both
accelerates the display, and eliminates the random noise from the display. It is important to
note that the actual spp data becomes unchanged.

Below is a sample waveform and its spectrum.

j Sample waveform and its spectrum, Lucas

20

Applied Math 91r A Fine Speech Recognizer

6 Training and Recognition

After generating all the spp files, the control is given to the training program, which takes
an spp file for the training data. By default, this file consists of a sequence of utterances
comprising of our vocabulary, five utterances per phrase in consecutive order. The training
module then outputs a model file (mdl) of the following format:

for each model

line 0: blank

line 1: MODEL <model type> <model name>

line 2: blank

line 3: NODE\t\tPARAM\tMEANS(DEV)

lines 4-n+3: <node name>\t<mean(s.d.) of amplitude>\t<data>

<data>: for each component: <mean(s.d.) of component>

j Check format. Nick, Jen?

The penalty function is based on the likelihood of a given value to be modeled by a Normal
distribution with the above mean and standard deviation. Let the mean of a node be µ and
the standard deviation – σ. Let the value of one component of a feature be x. Then the
penalty is given by

p =
1

σ
√

2π
e−

1

2

x−µ

σ (14)

In order to speed up calculations, we noticed that instead of attempting to find the proba-
bility of fitting the model, we can only look at likelihoods (the difference between likelihoods
and probabilities is that with likelihoods, only relative quantites are meaningful, but this is
exactly what we seek) and thus take the log of p. The actual penalty is then given by

p′ = log
1

σ
√

2π
− 1

2

x− µ

σ
(15)

Taking the logs then simplifies the matter even more since in order to find the total likelihood
of the model fitting the data, all we need to do is to add all these log-likelihoods.

j What is the actual penalty? Nick, Jen, Jack?

21

Applied Math 91r A Fine Speech Recognizer

The same penalty function is used in the recognizer.

While both sound processing and training can be done off-line, the actual recognition is rather
time-critical and needs to be done as quickly as possible. The initial Dynamic Programming
method has a cubic-order running time, which, for a large number of possible models, be-
comes infeasible. The following sections focus on the improvements and refinements of the
original method, as well as changes in design necessary to accomplish the imposed set of
goals.

6.1 Discrete Phrase Recognition

Recall that the first task was to perform a successful, 100% recognition of short phrases given
a very small vocabulary. We used the phrases “Mathematics”, “Applied Math”, “Lignuistics”
and “Computer Science” because these are the departments which approved of this 91r
project. The training module created a model for each of the four utterances. We used a
fixed number of nodes n for all models, though the value of n was experimentally chosen to
be optimal (see following sections). The recognizer then used the four models to find the
best fit of an occurrence it was given. This task was simple enough so that once all teams
finished writing their modules it took a brief meeting to combine all modules together and
perform the entire process of digital processing, spectrum analysis, training and recognition.
Again, PHPs modular design paradigm proved to be of immense help here.

For the sake of organization, lst files were created, which are plain text prompts, including
all phrases in the order in which they were recorded. We wrote a script, that given a
vocabulary list, generated three lst files for training, practice, and testing.

The training lst file repeats each phrase five times before going on to the next one. The
practice lst file repeats the entire vocabulary five times. The test lst file is completely
randomized, depending on the Shuffler class, available online.

6.1.1 Exhaustive Search

The very first task only consisted of four phrases, each phrase was modeled with at most
twenty nodes, and the number of frames of each utterance rarely exceeded one hundred. This
allowed us to run the recognition basically as an exhaustive search procedure. Penalties were
found for all models and the model with the smallest penalty was chosen to be the answer.
Our recognizer achieved a 100% accuracy rate, correctly identifying 20 shuffled utterances,
each corresponding to one out of four phrases in the vocabulary.

22

Applied Math 91r A Fine Speech Recognizer

6.1.2 Thresholding

The next task was somewhat more resource-consuming. We aimed to expand our vocabulary
to 20 phrases. It quickly became clear that some heuristics need to be implemented in order
to shorten the running time of the recognizer.

The main idea is to eliminate all paths which are unlikely to give the minimum-penalty
solution as early on as possible, given their current behavior, in order to prune the search
space and achieve speed growth. An idea of thresholding was put forth: all paths whose
current penalty is above a certain threshold will be instantly pruned. This threshold was
chosen to be a certain margin above the up-till-now-minimal path. Let the threshold be,
say, h. Let the penalty of the currently minimal path be P . This means that any state
in the Dynamic Programming model whose current penalty is greater than (1 + h)P is
immediately assigned a penalty of +∞ and thus never considered again. Now, if this process
were extended to all models we’re currently looking at, the potential speedup benefits are
enormous since we’re pruning an entire two-dimensional space (all modes in all states in one
time frame). Following chapter discusses the speed of the algorithm with various parameters
and variable threshold.

With thresholding turned on and the vocabulary extended to 20 words, on a 100-phrase test
set our recognizer achieved an astonishing 98% success rate. Curiously, the two phrases that
the recognizer confused were “Hurry up” and “...”.

j ...and what? Jack?

6.1.3 Duration Modeling

Hidden Markov Model is a nice theoretical device allowing us to formulate the problem of
speech recognition and seek its solution, but one feature that it’s inherently missing is (by
virtue of its definition) state memory, some mechanism for controlling how long, for example,
the finite state machine should spend in each node.

As an experiment, we decided to add duration modeling to our recognizer. We decided to
model the duration of a node with the Poisson distribution. Using this distribution makes
sense, because the longer we stay in a node, the larger the variation in number of frames
it will be assigned is. Also, Poisson distribution is an easy one to work with since its only
parameter λ happens to be both the mean and the standard deviation. We can extract the

23

Applied Math 91r A Fine Speech Recognizer

mean quite easily from the presented models and plug this mean in as our λ value in the
Poisson distribution.

To calculate the λ values for each node in each word, we just take all models of the word
and average the number of frames assigned to the node. We can then store these values for
the λs in a two-dimensional array (or other suitable data structure), indexed by word and
node.

We experimented on two possibilities:

• Adding the negative log likelihoods upon exit from a node. We just needed to add

λ +

n
∑

i=1

(log n− log λ) (16)

on exit from each node, where n is equal to the number of frames assigned to a node.

• Adding the negative log likelihoods after each frame. Here we need to add λ each time
we enter a new, and add log n− log λ each time a new frame is assigned to that node.

Obviously, both methods reduce to the same value on exit from the node. The latter,
however, allows us to use thresholding for each frame (the former adds penalties only after
a state change).

The results of using duration modeling, together with thresholding, are presented in the
following chapter.

6.2 Phoneme-based Recognition

Up until this point we were still using a fixed number of nodes per phrase for all phrases. This
clearly was a wrong approach as the phrases that we introduced into our vocabulary were
no longer similar in length. We decided to use a variable number of nodes, and how many
nodes a given phrase should have was deduced from the IPA transcription of the phrase. We
decided to use δ nodes per phoneme, but we also added some phonemes, as outlined below.
δ was then experimentally chosen.

Of course, in a real speech recognizer, we’d need an IPA dictionary in order to be able to
transcribe users’ utterances on the fly. For simplicity, we decided we happened to have IPA
transcriptions for all utterances in our vocabulary.

24

Applied Math 91r A Fine Speech Recognizer

Our standard transcriptions ignore strength and stress marks, but we used ’!’ for aspira-
tion. In addition, we included a few new symbols for the phonemes that are affected by a
neighboring “r”:

<r – as in “air”
∼r – as in “fur” without the “f”
>r – as in “more” without the “m”
+r – as in the “tr” part of “translate”

For instance, the phrase “Could you drive more slowly, please.” has been transcribed as

:kUd ju draIv moUr sloUli p!liz

For this task, we wrote an additional script to generate our modified spp files to combine
the English prompts from the lst files with the IPA transcriptions.

The graphics module was modified to allow for display of node boundaries with corresponding
phonemes underneath the nodes, which became a neat debugging tool (it was easy to see
if the training module went hayward by looking at the spectrogram and checking if the
phonemes were correctly placed) as well as an illustration of a rather impressive feature of
our recognizer.

Once this part was verified to work rather well, we moved on to phoneme-based recognition,
where models for individual phonemes across all utterances of all phrases are found, and
then the recognizer looks at the phonetic transcriptions of the phrases in the vocabulary and
concatenates the models for the phrases by concatenating the phoneme models in real-time.

6.2.1 Basic Model

In a basic model, every occurrence of the same phoneme was treated as the same model. In
other words, both “m” in “mathematics” and the “m” in “applied math” were all averaged
out together to create a universal model for the phoneme “m”. This was obviously bound
to create a less accurate recognizer, since due to averaging of many nodes, each model
suffered a great information loss. Moreover, we could not guarantee that all same phonemes
were correctly identified, which introduced even greater possibility of misinterpretation. This
stage was purely experimental, as we wanted to see how accurate our recognizer can get even
with such small number of training data. Having a couple of occurrences of each phoneme
is clearly not sufficient to fully reconstruct the phonetic model for all words in a language.
The following chapter summarizes the work and the results we achieved.

25

Applied Math 91r A Fine Speech Recognizer

6.2.2 Context-sensitive Model

A better idea is to use a context-sensitive model, where a model is created for each possible
junction of two phonemes rather than phonemes themselves. This would involve a signifi-
cantly greater amount of resources as the number of nodes potentially increases quadratically
and the recognizer now has a much greater number of nodes to work with. However, if thresh-
olding were to prove effective in pruning the search space, a context-sensitive model would
be a much more accurate model to perform the recognition with.

6.3 Attempts at Connected Recognition

An additional interesting speech recognition task is connected number recognition, which
is quite useful for recognizing phone numbers and zip codes. An arbitrary length number
recognizer can be adequately modelled by learning only three digit numbers. The idea here
is to create a model for each digit preceded with and followed by every other digit. This
would create nodes that span across digits, as well as nodes that refer to actual digits. For
example, a number 347 can be thought of as consisting of the following nodes:

j Nodes: (-3)(3)(34)(4)(47)(7)(7-), Lucas

The data generation task is slightly different here, because we do not know ahead of time
exactly what sequences we will want to recognize. Creating a model for, say, all 1000 possible
combinations of three-digit numbers is obviously too resource-consuming. We therefore had
to be careful to maintain some scarcity.

We decided to generate five sets of one hundred numbers, using three of these sets for training,
and one each for practice and testing. These sets are each generated semirandomly, with the
property that each two digit sequence occurs once in the front position and once the back
position. This assures that each digit shows up 10 times in each of the three positions, and
that we will always have data on how that digit behaves in the context of other digits. For
example, an arbitrary sequence “11” shows up in one of the training datasets as “115” and
”311.”

The code for this is available in the module “generate numbers.php.” The basic algorithm
operates as follows. First, we generate a random permutation of the 100 numbers (0-9 ten
times each) that will appear as the first digit. Then, for the second digit, we generate 10
permutations of the 10 numbers, one to follow each possible first digit. Thus, we have 10

26

Applied Math 91r A Fine Speech Recognizer

random arrays. If ’0’ is the first digit, then we will take the second digit from array ’0’. If
’1’ is the first digit, we will take the second digiit from array ’1’. The third digit is generated
exactly like the second digit, except that numbers are grabbed from its arrays dependant on
the second digit.

27

Applied Math 91r A Fine Speech Recognizer

7 Working Recognizer in Action

This chapter describes the running process of our recognizer. Since it’s been written entirely
in PHP, the front-end was a website which we could access from any computer anywhere,
connected to the network.

After recording the user’s voice using a program provided by ScanSoft called NCollect, the
user was prompted to complete a series of steps in a web browser. These in turn concatenated
the recordings, processed them for frequency strength, created training models based on the
energy at each of the levels, and then matched the training models against a second series
of recordings to determine what the user had actually spoken. The end result appeared as a
list, with the phrase determined to have been spoken at the top, followed by other possible
matches, each corresponding to an indexed score generated by the software recognizer.

j Aaron, more?

28

Applied Math 91r A Fine Speech Recognizer

8 Result Analysis

8.1 Accuracy

* 20 phrases, thresholding as a function of threshold
* With/without duration modeling
* With n nodes per phoneme

8.2 Speed

* Thresholding
* With/without duration modeling AND thresholding

j We need some here, Jack, Anyone else?

29

Applied Math 91r A Fine Speech Recognizer

9 Further Improvements

Our recognizer, though it works pretty well, is still far from being a commercial product.
Many ideas we’ve had, we didn’t have a chance to test out. Some more tempting improve-
ments are given in the following sections.

9.1 Yet Faster FFT

Though the sound processing part of the entire process is not a bottleneck due to an incred-
ibly fast FFT algorithm, one can say that what doesn’t hurt much should just as well be
implemented. One can make use of the fact that the imaginary part of the data is always
zero and write a more efficient implementation of FFT, which can speed up all calculations
by a factor of two. The same speedup can be accomplished with using bit-shifted integers
instead of double-precision numbers or tabulating logarithms.

9.2 Pipelined Process and just-in-time training

This is not usually the case, but in rare cases where the recognition briefly follows the
training, and both processes happen once only, the training could actually be postponed until
the recognition started. Then the training and the recognition could be pipelined, so that
the two processes take less time in total. There are, however, a couple of major difficulties
with this approach as this would make thresholding very difficult, if not impossible (not all
models are available at the time of recognizing).

9.3 Full Phoneme-Based Recognition

If we ever get hold of a large set of spoken data, all with IPA transcriptions, we can attempt a
task to generate a library of phoneme models, which would include phoneme boundaries (per-
haps only some more problematic ones). With such full set of models, a 100% phoneme-based
recognition is possible, where the recognizer needs to know nothing about the vocabulary
of the speaker. Perhaps a less extensive version of training could be used to “finetune” the
existing phoneme set and adapt it to the speaker. This is all, we think, in the realm of
possibility.

30

Applied Math 91r A Fine Speech Recognizer

9.4 Continuous Recognition

One feat seems to be being able to perform a continuous, real-time recognition task. This is
possible with a real-time processing language (PHP, unfortunately, such language is not), a
lot of memory, threads running in parallel, processing the FFT and the recognition, and –
most importantly – a very good thresholding algorithm, since the recognition part becomes
the bottleneck of the entire process. Obviously, phoneme-based or word-based recognition
that takes into account phoneme/word boundaries is a must.

Perhaps a smart duration model with good, accurate thresholding and an extensive library
of phoneme models can accomplish the task. The author recommends that such task be
taken up by the ever-ambitious 91r-ers of Spring 2005.

♦

31

Applied Math 91r A Fine Speech Recognizer

10 Bibliography

Voice Recognition Technology,
http://florin.stanford.edu/∼t361/Fall2000/TWeston/consumer products.html

Wells, J., IPA transcription systems for English,
http://www.phon.ucl.ac.uk/home/wells/ipa-english.htm

Understanding FFT,
LDS Inc., 2003 (www.lds-group.com)

Ziemer, R., Signals & Systems,
Prentice Hall, New Jersey, 1998

Bourke, P., Discrete Fourier Transform. Fast Fourier Transform,
astronomy.swin.edu.au/∼pbourke/analysis/dft/

Oppenheimer, A.V., Shaffer, R.W., Digital Signal Processing,
Prentice Hall, New Jersey, 1975

Rabiner, L.R., A tutorial on hidden Markov Models and selected applications in speech
recognition, Proceedings of the IEEE, 1989

Charniak, E., Statistical Language Learning
MIT Press, 1993

32

